AN ALGORITHM FOR A CLASS OF (n, j, k) - GOOD MATRICES RELATED TO NUMERICAL SEMIGROUPS WITH EMBEDDING DIMENSION 4.

Autor: BAJRAMI, MERITA, DIMOVSKI, DONČO, ANGJELKOSKA, VIOLETA
Předmět:
Zdroj: Matematichki Bilten. Bulletin Mathématique de la Société des Mathématiciens de la République de Macédoine; 2023, Vol. 47 Issue 2, p85-95, 11p
Abstrakt: In this paper, first we recall the definitions of (n, j)-good 2x2 and (n, j, k)-good 3x3 integer matrices, connected to numerical semigroups of embedding dimension 3 and 4, respectively. Then, for given natural numbers n, j and k where 1 < j, k < n and k ≠ j, we present an algorithm for obtaining all the (n, j, k)-good matrices M = ... corresponding to a given (n, j)-good 2x2 matrix K0 = ... such that a ≤ a0 and v ≤ v0. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index