Abstrakt: |
Flood variability associated with urbanization, ecological change, and climatic change is of increasing economic and social concern in and around Flagstaff, Arizona, where flood hydrology is influenced by a biannual precipitation regime and the relatively unique geologic setting at the edge of the San Francisco Volcanic Field on the southern edge of the Colorado Plateau. There has been limited long-term gauging of the ephemeral channels draining the developed lands and dry coniferous forests of the region, resulting in a spaciotemporal gap in observation-based assessments of large-scale flooding patterns. We present new data from over 10 years of flood monitoring using a crest stage gauge network, combined with other channel monitoring records from multiple agency sources, to assess inter-decadal patterns of flood change in the area, with a specific emphasis on examining how various controls and disturbances have altered the character and seasonality of peak annual flows. Methods of analysis included the following: using Fisher's Exact Test to compare the seasonality of flooding between historic data spanning the 1970s and contemporary data obtained since 2010; summarizing GIS-based spatial data and meteorological timeseries to characterize study catchment conditions and changes between flood study periods; and relating spatiotemporal patterns of flood seasonality and occurrences of notably large floods with catchment characteristics and environmental changes. Our results show systematic patterns and changes in Flagstaff-area flood regimes that relate to geologic and topographic controls of the varied catchment systems, and in response to records of climate variations and local catchment disturbances, including urbanization and, especially, high-severity wildfire. For most catchments there has been a shift from predominantly late winter to spring snowmelt floods, or mixed seasonal flood regimes, towards monsoon-dominated flooding, patterns which may relate to observed local warming and precipitation changes. Post-wildfire flooding has produced extreme flood discharges which have likely exceeded historical estimates of flood magnitude over decade-long monitoring periods by one to two orders of magnitude. We advocate for continued monitoring and the expansion of local stream gauge networks to enable seasonal, magnitude-frequency trend analyses, improved climate and environmental change attribution, and to better inform the many planned and ongoing flood mitigation projects being undertaken in the increasingly developed Flagstaff region. [ABSTRACT FROM AUTHOR] |