Abstrakt: |
Using Chlamydomonas as a model organism, we attempted to eliminate mitochondrial DNA (mtDNA) similar to rho0 or rho− cells (completely or partially mtDNA-eliminated cells) in yeast. We successfully generated partially mtDNA-eliminated cells named as crm- cells, causing the inactivation of mitochondrial activity. We used three different chemicals to eliminate mtDNA including acriflavine (AF), ethidium bromide (EB) and dideoxycytidine (ddC) which prevents replication, inhibits POLG (DNA polymerase gamma) and terminates the mtDNA chain, respectively. The qPCR method was used to detect the mtDNA copy number and the selected rrnL6 gene for the detection of mitochondria, as well as the selected Chlamydomonas CC-124 strain. A reduction in the mitochondrial copy number led to a higher expression of AOX1, UCP1, PGRL1 and ICL1, which indicates the disturbance of the mitochondria–chloroplast ATP and NADPH balance. We selected AOX genes to further study this family and carried out a genome-wide search to identify AOX genes in green algae (C. reinhardtii). Our results revealed that C. reinhardtii contains four AOX genes, i.e., CrAOX1, CrAOX2, CrAOX3 and CrAOX4, which are distributed on Chr 3, Chr7 and Chr9. All CrAOX genes were predicted to localize in mitochondria using bioinformatics tools. Phylogenetic analysis suggests that these CrAOXs are subdivided into four groups and genes existing in the same group could perform identical functions. Collinearity analysis describes the strong evolutionary relationships of AOXs between the unicellular green algae Chlamydomonas reinhardtii and the multicellular green algae Volvox carteri. GO (gene ontology) annotation analysis predicted that CrAOXs played an integral part in carrying out alternate oxidative and respirative activities. Three putative miRNAs, cre-miR1162-3p, cre-miR1171 and cre-miR914, targeting the CrAOX2 gene were identified. Our studies have laid a foundation for the further use of partially mtDNA-eliminated cells and elucidating the functional characteristics of the AOX gene family. [ABSTRACT FROM AUTHOR] |