Abstrakt: |
In order to realize the most economical operation of helicopter power system, the optimal rotor speed control method is proposed and designed. Firstly, the simplified performance calculation model of helicopter required power and turboshaft engine are established, which constitute the performance calculation model of helicopter power system together. Then, according to the above model, through applying blade loading constraint and selecting the minimum engine fuel flow as the optimization objective, an integrated optimization method of optimal rotor speed based on golden section method is proposed, which reveals the variation law of optimal rotor speed under different operation conditions. Finally, the numerical simulation and hardware-in-loop (HIL) simulation are conducted separately to validate the optimal rotor speed control method. The results indicate that compared with constant rotor speed operation, optimal rotor speed control method can decrease engine fuel flow by more than 21 %, which proves the significant effectiveness and satisfactory feasibility. The optimal rotor speed control method ensures that the helicopter power system operates at the optimal rotor speed, and is beneficial to reach the most economical cruise target. [ABSTRACT FROM AUTHOR] |