Enhancement of mechanical and thermal properties of carbon fiber phenolic resin composites using silicon carbide filler for thermal protection system applications.

Autor: Basingala, Praveen Kumar, Neigapula, Venkata Swamy Naidu
Předmět:
Zdroj: Journal of Industrial Textiles; 8/1/2024, p1-31, 31p
Abstrakt: Thermal protection systems (TPS) are vital for re-entry vehicles for their safe passage into the atmosphere from space. Hence, researchers took a keen interest in improving the thermal and ablative properties of composites to be used in making thermal protection systems. Therefore, an attempt was made to improve the thermal and ablative properties of composites made of carbon fibers (Cf) and resorcinol formaldehyde phenolic (Ph) resin with the incorporation of silicon carbide (SiC) particles. The filler was added in various percentages (0 wt% - blank, 1 wt%, 3 wt%, and 5 wt%), and the composites were tested for ablative, thermal and mechanical properties. The results demonstrate that the SiC-modified PAN-based carbon fiber reinforced phenolic (SiC-PANCf-Ph) composite with 3 wt% SiC enhancement exhibited ideal properties. The post-ablation phase composition and microstructure were examined through X-ray diffraction (XRD), Scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The surface morphology evidences the formation of a silicon dioxide (SiO2) layer on the composites. The SiC-PANCf-Ph composites demonstrated the lowest ablation rate, enhancing their potentiality for effective TPS applications. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index