γ-Valerolactone/CuCl2 biphasic system for high total monosaccharides recovery from pretreatment and enzymatic hydrolysis processes of eucalyptus.

Autor: Mo, Shuhua, Zheng, Yao, Gong, Jianyu, Lu, Minsheng
Zdroj: Frontiers of Chemical Science & Engineering; Nov2024, Vol. 18 Issue 11, p1-14, 14p
Abstrakt: The efficient fractionation and recovery of monosaccharides (xylose and glucose) from lignocellulosic biomass facilitates subsequent sugar-based derivative production. This study introduces a one-pot γ-valerolactone/ CuCl2 biphasic pretreatment system (100-mmol·L-1 CuCl2, 180 °C, 60 min) capable of achieving removal rates of 92.25% and 90.64% for xylan and lignin, respectively, while retaining 83.88% of cellulose. Compared to other metal chlorides (NaCl, LiCl, FeCl3, and AlCl3), the γ-valerolactone/CuCl2 system recovered 121.2 mg·(g eucalyptus)-1 of xylose and 55.96 mg·(g eucalyptus)-1 of glucose during the pretreatment stage and 339.2 mg·(g eucalyptus)-1 of glucose during the enzymatic hydrolysis stage (90.78% of glucose yield), achieving a total monosaccharide recovery of 86.31%. In addition, the recovery of γ-valerolactone was 79.33%, exhibiting minimal changes relative to the pretreatment performance. The method proposed in this study allows a high total monosaccharides recovery and a circular economy-oriented pretreatment approach, offering a viable pathway for biorefinery. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index