Autor: |
Boborodea, Adrian, Cordenier, F., Lemenu, C., Panarisi, L., Le Maître, P., Denis, S., De Groote, P. |
Předmět: |
|
Zdroj: |
International Journal of Polymer Analysis & Characterization; Aug2024, Vol. 29 Issue 6, p347-362, 16p |
Abstrakt: |
Poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) exhibit valuable mechanical properties like high stiffness and tensile strength but are sensitive to processing parameters. The influence of these parameters was evaluated by measuring the variation of melt viscosity during processing. For all experiments, in the absence of chain extenders, the decrease in melt viscosity clearly showed the degradation of polymers during processing. This is more pronounced for PHBV than PLA. In order to compensate for the degradation and, if possible, improve the melt strength of these bio-based polymers, two chain extenders have been evaluated: dicumyl peroxide (DCP) and a polymeric epoxy acrylate chain extender (Joncryl® ADR 4400). DCP reacts quickly with PLA and PHBV, while the epoxy-acrylate chain extender shows slower kinetics. For the PLA, with both investigated chain extenders, an increase in the molecular weight as compared with the virgin polymer and eventually the apparition of an insoluble fraction due to branching and crosslinking are observed. In the case of PHBV, the degradation is compensated by using DCP, requiring short processing times. No significant increase in molecular weight was observed when using the polymeric epoxy acrylate chain extender, requiring longer residence times, although the apparition of a gel fraction suggests the presence of branching and crosslinking. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|