Autor: |
Xuerong Sun, Brewin, Robert J. W., Hacker, Christian, Viljoen, Johannes J., Mengyu Li |
Předmět: |
|
Zdroj: |
Frontiers in Microbiology; 2024, p1-14, 14p |
Abstrakt: |
The community structure and ecological function of marine ecosystems are critically dependent on phytoplankton. However, our understanding of phytoplankton is limited due to the lack of detailed information on their morphology. To address this gap, we developed a framework that combines scanning electronmicroscopy (SEM) with photogrammetry to create realistic 3D (three-dimensional)models of phytoplankton. The workflow of this framework is demonstrated using two marine algal species, one dinoflagellate Prorocentrum micans and one diatom Halamphora sp. The resulting 3D models are made openly available and allow users to interact with phytoplankton and their complex structures virtually (digitally) and tangibly (3D printing). They also allow for surface area and biovolume calculations of phytoplankton, as well as the exploration of their light scattering properties, which are both important for ecosystem modeling. Additionally, by presenting these models to the public, it bridges the gap between scientific inquiry and education, promoting broader awareness on the importance of phytoplankton. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|