Autor: |
Ceddia, Mario, Solarino, Giuseppe, Giannini, Giorgio, De Giosa, Giuseppe, Tucci, Maria, Trentadue, Bartolomeo |
Předmět: |
|
Zdroj: |
Journal of Composites Science; Jul2024, Vol. 8 Issue 7, p254, 13p |
Abstrakt: |
Total hip arthroplasty is one of the most common and successful orthopaedic operations. Occasionally, periprosthetic osteolysis associated with stress shielding occurs, resulting in a reduction of bone density where the femur is not properly loaded and the formation of denser bone where stresses are confined. To enhance proximal load transfer and reduce stress shielding, approaches, including decreasing the stiffness of femoral stems, such as carbon fibre-reinforced polymer composites (CFRPCs), have been explored through novel modular prostheses. The purpose of the present study was to analyse, by the finite element analysis (FEA) method, the effect that the variation of material for the distal part of the femoral stem has on stress transmission between a modulable prosthesis and the adjacent bone. Methods: Through three-dimensional modelling and the use of commercially available FEA software Ansys R2023, the mechanical behaviour of the distal part of the femoral stem made of CFRPC or Ti-6Al-4V was obtained. A load was applied to the head of the femoral stem that simulates a complete walking cycle. Results: The results showed that the use of a material with mechanical characteristics close to the bone, like CFRPC, allowed for optimisation of the transmitted loads, promoting a better distribution of stress from the proximal to the distal part of the femur. This observation was also found in some clinical studies in literature, which reported not only an improved load transfer with the use of CFRPC but also a higher cell attachment than Ti-6Al-4V. Conclusions: The use of a material that has mechanical properties that are close to bone promotes load transfer from the proximal to the distal area. In particular, the use of CFRPC allows the material to be designed based on the patient's actual bone characteristics. This provides a customised design with a lower risk of prosthesis loss due to stress shielding. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|