Cucumber Downy Mildew Disease Prediction Using a CNN-LSTM Approach.

Autor: Wang, Yafei, Li, Tiezhu, Chen, Tianhua, Zhang, Xiaodong, Taha, Mohamed Farag, Yang, Ning, Mao, Hanping, Shi, Qiang
Předmět:
Zdroj: Agriculture; Basel; Jul2024, Vol. 14 Issue 7, p1155, 17p
Abstrakt: It is of great significance to develop early prediction technology for controlling downy mildew and promoting cucumber production. In this study, a cucumber downy mildew prediction method was proposed by fusing quantitative disease information and environmental data. Firstly, the number of cucumber downy mildew spores during the experiment was collected by a portable spore catcher, and the proportion of cucumber downy mildew leaf area to all cucumber leaf area was recorded, which was used as the incidence degree of cucumber plants. The environmental data in the greenhouse were monitored and recorded by the weather station in the greenhouse. Environmental data outside the greenhouse were monitored and recorded by a weather station in front of the greenhouse. Then, the influencing factors of cucumber downy mildew were analyzed based on the Pearson correlation coefficient method. The influencing factors of the cucumber downy mildew early warning model in greenhouse were identified. Finally, the CNN-LSTM (Convolutional Neural Network-Long Short-Term Memory) algorithm was used to establish the cucumber downy mildew incidence prediction model. The results showed that the Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and determination coefficient (R2) of the CNN-LSTM network model were 0.069, 0.0098, 0.0991, and 0.9127, respectively. The maximum error between the predicted value and the true value for all test sets was 16.9398%. The minimum error between the predicted value and the true value for all test sets was 0.3413%. The average error between the predicted and true values for all test sets was 6.6478%. The Bland–Altman method was used to analyze the predicted and true values of the test set, and 95.65% of the test set data numbers were within the 95% consistency interval. This work can serve as a foundation for the creation of early prediction models of greenhouse crop airborne diseases. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index