Abstrakt: |
This study delves into the adoption of the organic Rankine cycle (ORC) for recovering waste heat from data centers (DCs). Through a literature review, it examines energy reuse with a focus on electric power generation, the selection of working fluids, and system design principles. The objective is to develop a thorough framework for system design and analysis, beginning with a quantity and quality investigation of waste heat available. Air cooling systems, chosen often for their simplicity, account for about 70% of used cooling methods. Water cooling demonstrates greater effectiveness, albeit less commonly adopted. This study pays close attention to the selection of potential working fluids, meticulously considering the limitations presented by the available sources of heat and cold for vaporization and condensation, respectively. It reviews an ORC-based system setup, incorporating fluid streams for internal processes. The research includes a conceptual case study where the system is designed and simulations are conducted in the DWSIM environment. The simulation model considers hot air or hot liquid water returning from the data center cooling system for ORC working fluid evaporation. Ambient water serves for condensing, with pentane and isopentane identified as suitable organic fluids. Pentane assures ORC net electric efficiencies ranging between 3.1 and 7.1% when operating pressure ratios increase from 2.8 to 6.4. Isopentane systems, meanwhile, achieve efficiencies of 3.6–7.0% across pressure ratios of 2.7–6.0. Furthermore, the investigation provides key performance indicators for a reference data center in terms of power usage effectiveness (PUE), energy reuse factor (ERF), energy reuse effectiveness (ERE), and greenhouse gas (GHG) savings. This study concludes with guidelines for system analysis, including exergy considerations, and details the sizing process for evaporators and condensers. [ABSTRACT FROM AUTHOR] |