Abstrakt: |
Nowadays, the internet of electric vehicles (IoEV) has opened many new opportunities for various applications such as charging station selection, charging/discharging management, as well as supporting various end-user services. In Chile, the current deployment of charging station networks is still at an early stage and such stations do not support the required local and global communication and monitoring capabilities that allow the integration of such services. The underlaying communication infrastructures will play an important role in supporting different applications, such as grid-to-vehicle, vehicle-to-grid, and vehicle-to-vehicle services. This work developed an IoEV architecture for real-time monitoring of charging station networks, which consists of three layers: the physical layer, the communication network layer, and the virtual layer. In order to support reliable IoEV communications, different requirements for data rate, reliability, latency, and security are needed. We developed a communication network model for charging stations based on the IEC 61850-90-8 standard. The performance of the developed architecture has been evaluated considering different real scenarios including a standalone charging station, a group of charging stations in a university campus parking lot, and charging stations in a city. The performance of the communication network has been evaluated with respect to end-to-end latency. [ABSTRACT FROM AUTHOR] |