Heavy-tailed flood peak distributions: What is the effect of the spatial variability of rainfall and runoff generation?

Autor: Macdonald, Elena, Merz, Bruno, Nguyen, Viet Dung, Vorogushyn, Sergiy
Zdroj: Hydrology & Earth System Sciences Discussions; 7/29/2024, p1-24, 24p
Abstrakt: The statistical distributions of observed flood peaks often show heavy tail behaviour, meaning that extreme floods are more likely to occur than for distributions with exponentially receding tail. Falsely assuming light-tailed behaviour can lead to an underestimation of extreme floods. The robust estimation of the tail is often hindered due to the limited length of time series. Therefore, a better understanding of the processes controlling the tail behaviour is required. Here, we analyse how the spatial variability of rainfall and runoff generation affect the flood peak tail behaviour in catchments of various size. This is done using a model chain consisting of a stochastic weather generator, a conceptual rainfall-runoff model and a river routing routine. For a large synthetic catchment, long time series of daily rainfall with varying tail behaviour and varying degree of spatial variability are generated and used as input for the rainfall-runoff model. In this model, the spatial variability and mean depth of a subsurface storage capacity are varied, affecting how locally or widely saturation excess runoff is triggered. Tail behaviour is characterized with the shape parameter of the Generalized Extreme Value (GEV) distribution. Our analysis shows that smaller catchments tend to have heavier tails than large catchments. Especially for large catchments, the GEV shape parameter of flood peak distributions was found to decrease with increasing spatial rainfall variability. This is most likely linked to attenuating effects in large catchments. No clear effect of the spatial variability of the runoff generation on the tail behaviour was found. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index