Performance Study of Dynamic Intake and Exhaust Façades in Hot and Dry Climates: Iraq Case Study.

Autor: Hosseinalipour, S. M., Asiaei, S., Al-Taee, Ammar A. Hussain
Předmět:
Zdroj: Frontiers in Heat & Mass Transfer; 2024, Vol. 22 Issue 3, p747-767, 21p
Abstrakt: This paper is part of a series addressing the urgent need for effective technologies to reduce energy demand and mitigate climate impact. This study focused on the implementation and development of dynamic insulation technology for a sustainable and energy-efficient future in the region, especially in Iraq. The study assessed the energy efficiency of dynamic insulation technology by analyzing three wall models (static, dynamic, and modified) during the winter season. This paper expands the analysis to include a hot, dry summer scenario, providing valuable insights into the year-round performance of dynamic walls and enabling sustainable and energy-efficient solutions for Iraq's climate. The study evaluates the thermal efficiency of the dynamic intake and exhaust facades during the cooling season for the city of Baghdad. The finding indicated that the dynamic intake facade reduces energy consumption by 16.3% for the dynamic wall and 17.2% for the modified dynamic wall. In addition, the dynamic exhaust front reduces energy consumption by 46% during the cooling season, with the maximum permissible exhaust air level. Dynamic insulation is suitable for hot and dry climates, improving energy consumption. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index