TFSemantic: A Time–Frequency Semantic GAN Framework for Imbalanced Classification Using Radio Signals.

Autor: Liao, Peng, Wang, Xuyu, An, Lingling, Mao, Shiwen, Zhao, Tianya, Yang, Chao
Předmět:
Zdroj: ACM Transactions on Sensor Networks; Jul2024, Vol. 20 Issue 4, p1-22, 22p
Abstrakt: Recently, wireless sensing techniques have been widely used for Internet of Things (IoT) applications. Unlike traditional device-based sensing, wireless sensing is contactless, pervasive, low cost, and non-invasive, making it highly suitable for relevant IoT applications. However, most existing methods are highly dependent on high-quality datasets, and the minority class will not achieve a satisfactory performance when suffering from a class imbalance problem. In this article, we propose a time–frequency semantic generative adversarial network framework (i.e., TFSemantic) to address the imbalanced classification problem in human activity recognition using radio frequency (RF) signals. Specifically, the TFSemantic framework can learn semantic features from the minority classes and then generate high-quality signals to restore data balance. It includes a data pre-processing module, a semantic extraction module, a semantic distribution module, and a data augmenter module. In the data pre-processing module, we process four different RF datasets (i.e., WiFi, RFID, UWB, and mmWave). We also develop Fourier semantic feature convolution and attention semantic feature embedding methods for the semantic extraction module. A discrete wavelet transform is utilized for reconstructed RF samples in the semantic distribution module. In data augmenter module, we design an associated loss function to achieve effective adversarial training. Finally, we validate the effectiveness of the proposed TFSemantic framework using different RF datasets, which outperforms several state-of-the-art methods. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index