MICRO-COMPUTED TOMOGRAPHIC ASSESSMENT OF THE INFLUENCE OF LIGHT-CURING MODES ON INTERNAL VOID FORMATION IN BULK-FILL COMPOSITES.

Autor: Yenidünya, Özge Gizem, Misilli, Tuğba, Ocak, Mert
Předmět:
Zdroj: Journal of Stomatology; 2024, Vol. 77 Issue 2, p110-117, 8p
Abstrakt: INTRODUCTION: Polymerization reactions in a new generation bulk-fill composites carried out in a short time with high irradiation, raise concerns about curing processes. With micro-computed tomographic evaluation, it is possible to investigate polymerization shrinkage, and subsequent gap and void formation in dental materials. OBJECTIVES: The aim of this study was to evaluate the void formation in bulk-fill composites light-cured with different modes using micro-computed tomography. MATERIAL AND METHODS: Class I preparations were made in 25 molars that were randomly divided into subgroups, according to resin composite and curing mode used: Tetric EvoCeram (TEC)*high power mode, TEC*turbo mode, Tetric PowerFill (TPF)*high power mode, TPF*turbo mode, and TPF*3s mode. Each tooth was scanned at two time intervals: pre- and post-cure. RESULTS: After light-curing, a significant increase in the total volume of internal void was noted for both composites cured with high power mode compared with pre-cure. The difference between the sub-groups at post-cure was also significant. While TEC exhibited similar values in terms of different curing modes, turbo and 3s modes caused a significant difference in TPF group, and the lowest void percentage was detected in 3s mode. CONCLUSIONS: Internal void formation results from an interplay of different factors, including composition of materials and curing modes. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index