Abstrakt: |
This paper provides a framework based on machine learning approach in I4.0 environment to predict the remaining useful life of an aviation engine. For illustration purpose, an industrial case study is presented which applies machine learning algorithms to analyze the data collected using the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) simulation which includes run-to-degradation data for a turbofan engine. The results obtained from the study validate the proposed framework to identify prominent features and perform sequential analysis on unstructured data for predicting the remaining useful life of an aviation engine. Six machine learning models are applied to the dataset containing four subsets: FD001, FD002, FD003 and FD004 in C-MAPSS dataset each working on different degradation conditions for turbofan engine. For FD001, random forest had the lowest RMSE (11.59), and for FD002, FD003 and FD004, the lowest RMSE was given by LGBM classifier (12.78, 7.95 and 11.04), respectively. From the findings, it is observed that LGBM performs better with higher AUC 89% and lowest RMSE. The proposed framework can be applied to a wide range of failure prediction applications. Regardless of the underlying physics, ML-based data-driven methodologies can be used to analyze a wide range of systems. [ABSTRACT FROM AUTHOR] |