Advancements in Talik Research and a Novel Approach to Treatment for Talik beneath Subgrade.

Autor: Wang, Yuru, Niu, Fujun
Předmět:
Zdroj: Journal of Cold Regions Engineering; Sep2024, Vol. 38 Issue 3, p1-19, 19p
Abstrakt: The warming trend presents a significant threat to the underlying permafrost. Talik formation is widely recognized as a significant mechanism of permafrost degradation. Our research indicates that the term talik has undergone a long period of development and gradually formed, referring to unfrozen layers in permafrost. The talik has already resulted in extensive damage to the infrastructure built in permafrost areas. Here, we provide a brief overview of the current research status of talik. Accurately identifying talik presents a significant challenge. However, by integrating multiple identification tools with technology, the precision of talik detection can be enhanced, resulting in more accurate results. This paper discusses the strengths and weaknesses of each approach. While numerical simulations can enhance our understanding of the development mechanism and evolution process of taliks, most simulations focus on the evolution of taliks beneath lakes. These simulations emphasize the impact of subpermafrost groundwater flow on the development of lake taliks and the surrounding permafrost thickness. Today, there is a scarcity of relevant studies about taliks in cold zone engineering. The presence of talik exacerbates the occurrence of permafrost-related subgrade diseases, which are chronic and irreversible. Additionally, it poses a threat to the stability of the subgrades and worsens settlement issues. Therefore, we have analyzed the causes and distribution characteristics of talik beneath the subgrade and proposed a novel measure for preventing and controlling it. This measure aims to enhance the long-term service performance of subgrade in permafrost regions. The modified polyurethane material is injected into the talik through grouting technology as a replacement. This material has low thermal conductivity, strong water resistance, and certain strength. It effectively improves the hydrothermal environment conditions necessary for talik formation, preventing the formation of new taliks or impeding their development. As a result, the subgrade performance is enhanced. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index