Autor: |
Wang, Qi, A, John Blesswin, Manoranjitham, T, Akilandeswari, P, G, Selva Mary, Suryawanshi, Shubhangi, A, Catherine Esther Karunya |
Předmět: |
|
Zdroj: |
Electronic Research Archive; 2023, Vol. 31 Issue 11, p1-19, 19p |
Abstrakt: |
In today's digital landscape, securing multimedia visual information—specifically color images—is of critical importance across a range of sectors, including the burgeoning fields of logistics and supply chain management. Traditional Visual Cryptography (VC) schemes lay the groundwork for encrypting visual data by fragmenting a secret image into multiple shares, thereby ensuring no single share divulges the secret. Nevertheless, VC faces challenges in ascertaining the integrity of reconstructed images, especially when shares are manipulated maliciously. Existing solutions often necessitate additional shares or a trusted third party for integrity verification, thereby adding complexity and potential security risks. This paper introduces a novel Cheating-Resistant Visual Cryptographic Protocol (CRVC) for Color Images that aims to address these limitations. Utilizing self-computational models, this enhanced protocol simplifies the integrated integrity verification process, eliminating the need for extra shares. A standout feature is its capability to securely transmit meaningful shares for color images without compromising the quality of the reconstructed image as the PSNR maintains to be ∞. Experimental findings substantiate the protocol's resilience against quality degradation and its effectiveness in verifying the authenticity of the reconstructed image. This innovative approach holds promise for a wide array of applications, notably in sectors requiring secure document transmission, such as Logistics and Supply Chain Management, E-Governance, Medical and Military Applications. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|