Abstrakt: |
Objective: Due to the injuries caused by cold and frost in temperate and cold regions, utilizing strategies that increase cold tolerance to enhance the winter survival and establishment of seedlings is imperative. Methods: To investigate the effects of selenium nanoparticles application on photosynthetic and biochemical indices and cold tolerance of oilseed rape, an experiment was carried out based on a randomized complete blocks design with three replications at the research farm station of the University of Mohaghegh Ardabili in 2018. The treatments consisted of foliar application of selenium nanoparticles (0 [control], 25, and 50 mg L-1) applied at the 6-8 leaves stage. Results: The results demonstrated that selenium nanoparticle application significantly increased the RWC, photosynthetic pigments, antioxidant enzyme activity, winter survival, and grain yields. The highest RWC, maximal flourescnece (Fm), highest photochemical efficiency of photosystem II (Fv/Fm), and variable fluorescence (Fv), proline content, and the activity of catalase and peroxidase enzymes were obtained with the foliar application of 50 mg L-1 selenium nanoparticles. Selenium nanoparticles application significantly increased the winter survival of oilseed rape plants by about 7.18 to 8.94 percent, by improving the Fv/Fm, the activity of the antioxidant enzymes, and proline content. Foliar application of 25 and 50 mg L-1 selenium nanoparticles resulted in about 28.10 and 34.19 percent increase in grain yield of oilseed rape as compared to the control (no spraying) treatment, respectively. Conclusion: In general, the results demonstrated that applying 50 mg L-1 selenium nanoparticles had positive and significant effects on the photosynthetic and biochemical characteristics of winter oilseed rape, which resulted in the increased cold tolerance of the oilseed rape plants. [ABSTRACT FROM AUTHOR] |