Energy-Based Pore Pressure Generation Models in Silty Sands under Earthquake Loading.

Autor: Tomasello, Giuseppe, Porcino, Daniela Dominica
Předmět:
Zdroj: Geosciences (2076-3263); Jun2024, Vol. 14 Issue 6, p166, 19p
Abstrakt: During an earthquake, excess pore water pressure generation in saturated silty sands causes a reduction in shear strength and even liquefaction of the soil. A comprehensive experimental program consisting of undrained cyclic simple-shear tests was undertaken to explore the key factors affecting the energy-based excess pore water pressure generation models for non-plastic silty sands. The examined influencing factors were non-plastic fines content (less than and greater than the threshold value ≅ 25%), packing density, vertical effective stress, applied cyclic stress ratio, and soil fabric. The relationship between excess pore water pressure ratio and dissipated energy per unit volume was found to be mainly dependent on the relative density and fines content of soil, whereas the cyclic stress ratio, initial vertical effective stress, and soil fabric (i.e. the reconstitution method) appeared to have a minor impact. A revision of the original energy-based model developed for clean sand by Berrill and Davis was proposed to improve prediction accuracy in terms of residual excess pore water pressures versus normalised cumulative dissipated energy. Nonlinear multivariable regression analyses were performed to develop correlations for the calibration parameters of the revised model. Lastly, these correlations were validated through additional cyclic simple-shear tests performed on different silty sands recovered at a site where liquefaction occurred after the 2012 Emilia Romagna (Italy) earthquake. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index