Antioxidative Response of Duckweed (Lemna minor L.) to Rhizosphere-Associated Pseudomonas Strains and Exogenous Indole-3-Acetic Acid.

Autor: Popržen, Tatjana, Jevremović, Slađana, Milošević, Snežana, Đurić, Marija, Uzelac, Branka, Stanković, Slaviša, Radulović, Olga
Předmět:
Zdroj: Horticulturae; Jun2024, Vol. 10 Issue 6, p562, 19p
Abstrakt: Aquatic plants, just like terrestrial plants, are exposed to oxidative stress. However, their responses are still under-researched. In this study, we examined the physiological and antioxidative responses of an aquatic plant, duckweed (Lemna minor L.), to four indole-3-acetic acid (IAA)-degrading and -producing Pseudomonas bacteria (Pseudomonas oryzihabitans D1-104/3, P. putida A3-104/5, P. gessardii C31-106/3 and P. yamanorum C44-104/1) and/or a supraphysiological level of IAA (10 mg L−1). Growth characteristics, total photosynthetic pigment content, histochemical localization of reactive oxygen species and antioxidant enzyme activity (SOD, CAT and POX) were evaluated at two time points, after 3 and 7 days of co-cultivation. Superoxide anion and hydrogen peroxide were produced and accumulated mainly in the roots, daughter fronds and veins of duckweeds. Duckweeds' responses depended on the strain of Pseudomonas, time and exogenous IAA. Co-cultivation of duckweed with bacteria has positive or neutral effects. Exogenous application of IAA had a negative or neutral effect on enzyme activity and other parameters. Co-cultivation with P. gessardii C31-106/3 showed plant-growth-promoting effects on duckweed: increased biomass production, modulation of duckweeds' antioxidant enzymatic activity and reduction in hydrogen peroxide content. This study widens our knowledge of aquatic plants and their response to oxidative stress, supports the hypothesis that plant growth-promoting bacteria (PGPB) induce tolerable levels of oxidative stress in plants and introduces a new PGPB strain, P. gessardii C31-106/3. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index