Intraspecific differences in the photosynthetic responses to chloroplast CO2 and photon flux density at different leaf temperatures of four grapevine cultivars grown in common outdoor conditions.

Autor: Greer, Dennis H.
Předmět:
Zdroj: Plant Direct; Jun2024, Vol. 8 Issue 6, p1-16, 16p
Abstrakt: Comparative measurements of four Vitis vinifera cultivars were undertaken to assess assimilation tolerance to the high growth temperatures currently pervading Australian and other wine growing regions. The cultivars, cvs. Chardonnay, Merlot, Semillon, and Shiraz, were all grown in common growth conditions, and an hypothesis promulgated genotypic variation in assimilation and in the leaf temperature dependency. Assimilation responses to varying light intensity and to varying chloroplast CO2 at a range of leaf temperatures (15–45°C) were measured in leaves of each cultivar in mid‐summer. Light response curves revealed marked genotype differences in maximum assimilation, but temperature effects also varied. Semillon leaves were most sensitive to temperature, with marked and steep differences in assimilation at different temperatures while Chardonnay and Merlot were least sensitive, with relatively flat responses. There were also marked cultivar differences in response to CO2 and significant effects of leaf temperature. CO2‐saturated assimilation varied markedly, with Semillon and Merlot leaves most responsive to temperature, although there were differences in optimum temperatures and maximum rates. Chardonnay leaves remained least tolerant, with lowest rates of assimilation across most temperatures. Assimilation at 45°C also separated the cultivars and two cultivars had higher rates than at 15°C while Chardonnay and Merlot leaves had higher rates at 15°C. There were no cultivar differences in the temperature dependency of Ribulose 1,5‐bisphosphate (RuBP) carboxylation, but Semillon had a much steeper temperature dependency on RuBP regeneration than the other cultivars. All these responses confirmed the hypothesis and concluded the high‐temperature tolerance of Semillon and Shiraz and the poor adaptability of Chardonnay and possibly Merlot to perform in the current high‐temperature growth conditions. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index