A Methodology for the Assessment and Prioritization of Genetic Biocontainment Technologies for Engineered Microbes.

Autor: Payne, Stephen, Wick, Scott, Carr, Peter A., Guido, Nicholas J.
Zdroj: Applied Biosafety: Journal of the American Biological Safety Association; Jun2024, Vol. 29 Issue 2, p108-119, 12p
Abstrakt: Introduction: Organisms engineered with synthetic genes and genomes have the potential to play critical roles to address important issues in the environment, human health, and manufacturing. Engineered genetic biocontainment technologies are needed to manage the risks of unintended consequences when deploying these biological systems in consultation with the biosafety and biosecurity communities. Metrics measuring genetic biocontainment and a methodology to apply them are required to determine which genetic biocontainment technologies warrant further development for real-world applications. In this study, we develop and apply a systems analysis of the current technical landscape using expert opinion and a metric-based scoring system resulting in a semiquantitative comparative assessment of genetic biocontainment technologies in microorganisms. Methods: Genetic biocontainment technologies were evaluated according to multiple metrics, falling into two broad classes: feasibility and applicability. Specific genetic biocontainment example scenarios and generalized categories were scored with these metrics. Gap analysis was carried out, indicating particular areas where genetic biocontainment can be improved. Results: Metric analysis scoring of feasibility and applicability enabled prioritization of genetic biocontainment technologies for real-world applications. Gap analysis showed that technology readiness and containment stability scored low for a number of scenarios and categories, indicating a general need for further development before they can be ready for deployment. Conclusion: Developing an assessment framework with defined metrics produced a straightforward system for evaluating genetic biocontainment strategies intended for various real-world applications. Use of the methodology also provided insights into existing gaps in genetic biocontainment strategies, and by altering the metrics, can be applied to other biotechnologies. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index