Autor: |
Jiguang Bao, Yimei Li, Kun Wang |
Předmět: |
|
Zdroj: |
Revista Mathematica Iberoamericana; 2024, Vol. 40 Issue 4, p1351-1386, 36p |
Abstrakt: |
In this paper, we study the asymptotic symmetry and local behavior of positive solutions at infinity to the equation outside a bounded set in Rn, where Rn/3, Laplacian with asymptotically flat Riemannian metric g. We prove that the solution, at1, either converges to a fundamental solution of the Laplace operator on the Euclidean space, or is asymptotically close to a Fowler-type solution defined on Rn/3. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|