Abstrakt: |
Generally speaking, we can easily specify many causal relationships in the prediction tasks of ubiquitous computing, such as human activity prediction, mobility prediction, and health prediction. However, most of the existing methods in these fields failed to take advantage of this prior causal knowledge. They typically make predictions only based on correlations in the data, which hinders the prediction performance in real-world scenarios, because a distribution shift between training data and testing data generally exists. To fill in this gap, we proposed a Generative Adversarial Network (GAN)-based Causal Information Learning prediction framework, which can effectively leverage causal information to improve the prediction performance of existing ubiquitous computing deep learning models. Specifically, faced with a unique challenge that the treatment variable, referring to the intervention that influences the target in a causal relationship, is generally continuous in ubiquitous computing, the framework employs a representation learning approach with a GAN-based deep learning model. By projecting all variables except the treatment into a latent space, it effectively minimizes confounding bias and leverages the learned latent representation for accurate predictions. In this way, it deals with the continuous treatment challenge, and in the meantime, it can be easily integrated with existing deep learning models to lift their prediction performance in practical scenarios with causal information. Extensive experiments on two large-scale real-world datasets demonstrate its superior performance over multiple state-of-the-art baselines. We also propose an analytical framework together with extensive experiments to empirically show that our framework achieves better performance gain under two conditions: when the distribution differences between the training data and the testing data are more significant and when the treatment effects are larger. Overall, this work suggests that learning causal information is a promising way to improve the prediction performance of ubiquitous computing tasks. We open both our dataset and code1 and call for more research attention in this area. [ABSTRACT FROM AUTHOR] |