Autor: |
Kumar, Chhabeel, Tandon, Ankit |
Předmět: |
|
Zdroj: |
Environmental Science & Pollution Research; May2024, Vol. 31 Issue 23, p34709-34725, 17p |
Abstrakt: |
This study aims to investigate the factors influencing seasonal and long-term (2003–2021) changes in the near surface ozone (850 hpa) concentrations over different climatic sub-regions of India. Detailed comparison of daily (2019–2021) near surface ozone values of ERA-5 and CAAQMS (Continuous Ambient Air Quality Monitoring Stations) ground-based measurements revealed that ERA-5 is temporally in phase with CAAQMS measurements falling indifferent climatic sub-regions of India. ERA-5 near surface ozone shows statistically significant long-term (2003–2021) positive trends [2–4 percent per decade (ppd)] over most of the climatic sub-regions, over Indo-Gangetic Planes (IGPs), Southern and Central India trends are particularly strong. Trends were also estimated for each season separately, which were largely positive (2–6 ppd) over Central and Southern India in the Autumn and Winter seasons. Extensive climatological analysis reveals that the reversal of winds in the Indian monsoonal system plays a vital role in such trend patterns across the Indian subcontinent. South-westerly winds from June through September presumably bring ozone deficit air of marine origin, thus causing a dilution effect while the North-easterly winds during late Autumn and early Winters plausibly bring ozone-rich air from the stratospheric-tropospheric efflux dominated Himalayan region. It allows near surface ozone enhancement over Central and Southern India. Seasonal Principal component analysis (PCA) revealed that precursor gases (CH4 and NO2) and climatic variables especially specific humidity (SH) are the primary drivers of near surface ozone variability in the Winter season, while in Spring, climatic variables like boundary layer height (BLH), temperature (T) and SH have a significant role. Principal component regression (PCR) reveals a long-term increase in near surface ozone levels mostly dominated by precursor concentration over IGPs and Southern sub-regions. Whereas, BLH, T and SH significantly explain near surface ozone trends over North-eastern and Coastal India. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|