DNA- and Selectable-Marker-Free Genome-Editing System Using Zygotes from Recalcitrant Maize Inbred B73.

Autor: Yamada, Hajime, Kato, Norio, Ichikawa, Masako, Mannen, Keiko, Kiba, Takatoshi, Osakabe, Yuriko, Sakakibara, Hitoshi, Matsui, Minami, Okamoto, Takashi
Předmět:
Zdroj: Plant & Cell Physiology; May2024, Vol. 65 Issue 5, p729-736, 8p
Abstrakt: Genome-editing tools such as the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system have become essential tools for increasing the efficiency and accuracy of plant breeding. Using such genome-editing tools on maize, one of the most important cereal crops of the world, will greatly benefit the agriculture and the mankind. Conventional genome-editing methods typically used for maize involve insertion of a Cas9-guide RNA expression cassette and a selectable marker in the genome DNA; however, using such methods, it is essential to eliminate the inserted DNA cassettes to avoid legislative concerns on gene-modified organisms. Another major hurdle for establishing an efficient and broadly applicable DNA-free genome-editing system for maize is presented by recalcitrant genotypes/cultivars, since cell/tissue culture and its subsequent regeneration into plantlets are crucial for producing transgenic and/or genome-edited maize. In this study, to establish a DNA-free genome-editing system for recalcitrant maize genotypes/cultivars, Cas9-gRNA ribonucleoproteins were directly delivered into zygotes isolated from the pollinated flowers of the maize-B73 cultivar. The zygotes successfully developed and were regenerated into genome-edited plantlets by co-culture with phytosulfokine, a peptide phytohormone. The method developed herein made it possible to obtain DNA- and selectable-marker-free genome-edited recalcitrant maize genotypes/cultivars with high efficiency. This method can advance the molecular breeding of maize and other important cereals, regardless of their recalcitrant characteristics. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index