Abstrakt: |
Background: In this study, the antimicrobial activity of three different cleanser tablets on S. mutans and C. albicans adhesion to PMMA, polyamide and 3D printed resin was investigated. Methods: 40 samples were prepared for PMMA (SR Triplex Hot), polyamide (Deflex) and 3D printed resin (PowerResins Denture) materials and divided into four subgroups for cleansers (Aktident™, Protefix™, Corega™ tablets and distilled water) (n = 5). After the surface preparations were completed, the samples were immersed separately in tubes containing the prepared microorganism suspension and incubated at 37˚C for 24 h. After the incubation, the samples were kept in the cleanser solutions. The samples were then transferred to sterile saline tubes. All the tubes were vortexed and 10 µl was taken from each of them. Sheep blood agar was inoculated for colony counting. The inoculated plates were incubated for 48 h for S. mutans and 24 h for C. albicans. After incubation, colonies observed on all plates were counted. Statistical analyses were done with three-way ANOVA and Tukey's multiple comparison test. Results: Polyamide material registered the highest colony count of S. mutans, whereas PMMA registered the lowest. Significant differences in S. mutans adherence (p = 0.002) were found between the three denture base materials, but no such difference in C. albicans adherence (p = 0.221) was identified between the specimens. All three cleanser tablets eliminated 98% of S. mutans from all the material groups. In all these groups, as well, the antifungal effect of Corega™ on C. albicans was significantly higher than those of the other two cleanser tablets. Conclusions: According to the study's results, it may be better to pay attention to surface smoothness when using polyamide material to prevent microorganism retention. Cleanser tablets are clinically recommended to help maintain hygiene in removable denture users, especially Corega tablets that are more effective on C. albicans. [ABSTRACT FROM AUTHOR] |