Autor: |
Heidkamp, Maria C., Scully, Brian T., Vijayan, Kälpana, Engman, Steven J., Szotek, Erika L., Samarel, Allen M. |
Předmět: |
|
Zdroj: |
American Journal of Physiology: Cell Physiology; Aug2005, Vol. 289 Issue 2, pC471-C482, 12p, 3 Color Photographs, 21 Graphs |
Abstrakt: |
The nonreceptor protein tyrosine kinase (PTK) proline-rich tyrosine kinase 2 (PYK2) has been implicated in cell signaling pathways involved in left ventricular hypertrophy and heart failure, but its exact role has not been elucidated. In this study, replication-defective adenoviruses (Adv, encoding green fluorescent protein (GFP)-tagged, wild-type (WT), and mutant forms of PYK2 were used to determine whether PYK2 overexpression activates MAPKs, and downregulates SERCA2 mRNA levels in neonatal rat ventricular myocytes (NRVM). PYK2 overexpression significantly decreased SERCA2 mRNA (as determined by Northern blot analysis and real-time RT-PCR) to 54 ± 4% of Adv-GFP-infected cells 48 h after Adv infection. Adv-encoding kinase-deficient (KD) and Y402F phosphorylation-deficient mutants of PYK2 also significantly reduced SERCA2 mRNA (WT>KD>Y402F). Conversely, the PTK inhibitor PP2 (which blocks PYK2 phosphorylation by Src-family PTKs) significantly increased SERCA2 mRNA levels. PYK2 overexpression had no effect on ERK½, but increased JNK½ and p38MAPK phosphorylation from fourfold to eightfold compared with GFP overexpression. Activation of both "stress-activated" protein kinase cascades appeared necessary to reduce SERCA2 mRNA levels. Adv-mediated overexpression of constitutively active (ca)MKK6 or caMKK7, which activated only p38MAPK or JNKs, respectively, was not sufficient, whereas combined infection with both Adv reduced SERCA2 mRNA levels to 45 ± 12% of control. WTPYK2 overexpression also significantly reduced SERCA2 promoter activity, as determined by transient transfection of a 3.8-kb SERCA2 promoter-luciferase construct. Thus a PYK2-dependent signaling cascade may have a role in abnormal cardiac Ca2+ handling in left ventricular hypertrophy and heart failure via downregulation of SERCA2 gene transcription. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|