Autor: |
Tondar, Abtin, Sánchez-Herrero, Sergio, Bepari, Asim Kumar, Bahmani, Amir, Calvet Liñán, Laura, Hervás-Marín, David |
Předmět: |
|
Zdroj: |
Biomolecules (2218-273X); May2024, Vol. 14 Issue 5, p544, 18p |
Abstrakt: |
This study aimed to identify potential BCL-2 small molecule inhibitors using deep neural networks (DNN) and random forest (RF), algorithms as well as molecular docking and molecular dynamics (MD) simulations to screen a library of small molecules. The RF model classified 61% (2355/3867) of molecules as 'Active'. Further analysis through molecular docking with Vina identified CHEMBL3940231, CHEMBL3938023, and CHEMBL3947358 as top-scored small molecules with docking scores of −11, −10.9, and 10.8 kcal/mol, respectively. MD simulations validated these compounds' stability and binding affinity to the BCL2 protein. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|