The New Buffer Salt-Protected Sodium Butyrate Promotes Growth Performance by Improving Intestinal Histomorphology, Barrier Function, Antioxidative Capacity, and Microbiota Community of Broilers.

Autor: Melaku, Mebratu, Su, Dan, Zhao, Huaibao, Zhong, Ruqing, Ma, Teng, Yi, Bao, Chen, Liang, Zhang, Hongfu
Předmět:
Zdroj: Biology (2079-7737); May2024, Vol. 13 Issue 5, p317, 17p
Abstrakt: Simple Summary: The misuse and overuse of antibiotics in food animal production has brought about an antibiotic resistance crisis in the 21st century. To fight against this silent global pandemic through the transmission of poultry production, various in-feed antibiotic alternatives, primarily sodium butyrate products, are under evaluation, and promising results have been obtained in previous studies. To enhance this green feed additive evolution, this study evaluated the effects of a new type of buffer salt-protected sodium butyrate (NSB), which uses buffer salts to protect sodium butyrate, on the growth performance, various intestinal health indicators, and cecum microbiota of broilers during the rapid growth stage. The result shows that NSB improves growth performance, serum anti-inflammatory cytokines, gut morphology, intestinal immunity and antioxidant capacity, short-chain fatty acids' (SCFAs') content, and cecum microbiota, indicating that NSB can be a potential additive supporting the green feed additive industry in broiler nutrition. In this study, a commercial sodium butyrate protected by a new buffer salt solution (NSB) was tested to determine whether it can be used as an antibiotic alternative in broiler production. A total of 192 1-day-old broilers were randomly allocated to three dietary treatments: soybean meal diet (CON), antibiotic diet (ANT, basal diet + 100 mg/kg aureomycin), and NSB (basal diet + 800 mg/kg NSB). The growth performance, serum anti-inflammatory cytokines, intestinal morphology, gut barrier function, antioxidative parameters, SCFAs' content, and cecal microbiota were analyzed. The result showed that NSB significantly improved ADFI and ADG (p < 0.01), and decreased FCR (p < 0.01). Serum anti-inflammatory cytokine IL-10 was up-regulated (p < 0.01), and pro-inflammatory TNF-α was down-regulated (p < 0.05) by NSB supplementation. H&E results showed that VH and the VH/CD ratio significantly increased (p < 0.05) in the jejunum and ileum in the NSB group. Furthermore, ZO-1 (p < 0.01), claudin-1 (p < 0.01), and occludin (p < 0.05) in the jejunum and claudin-1 (p < 0.01) and mucin-2 (p < 0.05) in the ileum were significantly up-regulated in the NSB group. Additionally, SOD (p < 0.05) and the T-AOC/MDA ratio (p < 0.01) in the jejunum and SOD in the ileum were significantly increased (p < 0.05) in the NSB group. The MDA level also significantly increased (p < 0.01) in the ANT group in the jejunum. Propionic acid (p < 0.05) and butyric acid (p < 0.01) content significantly increased in the NSB group in the jejunum and ileum segments. The 16S rRNA sequencing results showed no significant difference (p > 0.05) in alpha and beta diversity among the groups. LEFSe analysis also indicated that Peptostreptococcaceae, Colidextribacter, Firmicutes, Oscillospira, and Erysipelatoclostridiaceae, which promote SCFA production (p < 0.05), were identified as dominant taxon-enriched bacterial genera in the NSB group. The Spearman correlation analysis revealed that Colidextribacter with ADFI, ADG, VH, claudin-1 (p < 0.05), and unclassified_f__Peptostreptococcaceae with ADFI, IL-10, and ZO-1 were positively correlated (p < 0.05). Furthermore, ADFI and ADG with IL-10, claudin-1, SOD, T-AOC, and butyric acid (p < 0.05), and similarly, ADG with VH (p < 0.05), showed a positive correlation. In conclusion, NSB enhanced the growth performance by improving jejunum and ileum morphology, and serum anti-inflammatory cytokines, and by regulating the intestinal barrier function and antioxidant capacity, SCFAs' content, and cecum microbiota, showing its potential use as an alternative to antibiotics in poultry nutrition. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index