Comparing roughness maps generated by five typical roughness descriptors for LiDAR-derived digital elevation models.

Autor: Fan, Lei, Zhao, Yang
Předmět:
Zdroj: AIMS Geosciences; 2024, Vol. 10 Issue 2, p1-14, 14p
Abstrakt: Terrain surface roughness, often described abstractly, poses challenges in quantitative characterization with various descriptors found in the literature. In this study, we compared five commonly used roughness descriptors, exploring correlations among their quantified terrain surface roughness maps across three terrains with distinct spatial variations. Additionally, we investigated the impacts of spatial scales and interpolation methods on these correlations. Dense point cloud data obtained through Light Detection and Ranging technique were used in this study. The findings highlighted both global pattern similarities and local pattern distinctions in the derived roughness maps, emphasizing the significance of incorporating multiple descriptors in studies where local roughness values play a crucial role in subsequent analyses. The spatial scales were found to have a smaller impact on rougher terrain, while interpolation methods had minimal influence on roughness maps derived from different descriptors. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index