Microbial community structure and carbon transformation characteristics of different aggregates in black soil.

Autor: Danqi Zhao, Wei Zhang, Juntao Cui
Předmět:
Zdroj: PeerJ; Apr2024, p1-23, 23p
Abstrakt: Background: Previous research on whole-soil measurements has failed to explain the spatial distribution of soil carbon transformations, which is essential for a precise understanding of the microorganisms responsible for carbon transformations. The microorganisms involved in the transformation of soil carbon were investigated at the microscopic scale by combining 16S rDNA sequencing technology with particle-level soil classification. Methods: In this experiment,16S rDNA sequencing analysis was used to evaluate the variations in the microbial community structure of different aggregates in no-tillage black soil. The prokaryotic microorganisms involved in carbon transformation were measured before and after the freezing and thawing of various aggregates in no-tillage black soil. Each sample was divided into six categories based on aggregate grain size: >5, 2-5, 1-2, 0.5-1, 0.25-0.5, <0.25 mm, and bulk soil. Results: The relative abundance of Actinobacteria phylum in <0.25 mm aggregates was significantly higher compared to that in other aggregates. The Chao1 index, Shannon index, and phylogenetic diversity (PD) whole tree index of <0.25 mm aggregates were significantly smaller than those of in bulk soil and >5 mm aggregates. Orthogonal partial least-squares discrimination analysis showed that the microbial community composition of black soil aggregates was significantly different between <1 and >1 mm. The redundancy analysis (RDA) showed that the organic carbon conversion rate of 0.25--0.5 mm agglomerates had a significantly greater effect on their bacterial community structure. Moreover, humic acid conversion rates on aggregates <0.5 mm had a greater impact on community structure. The linear discriminant analysis effect size (LEfSe) analysis and RDA analysis were combined. Bradyrhizobium, Actinoplane, Streptomyces, Dactylosporangium, Yonghaparkia, Fleivirga, and Xiangella in <0.25 mm aggregates were positively correlated with soil organic carbon conversion rates. Blastococcus and Pseudarthrobacter were positively correlated with soil organic carbon conversion rates in 0.25--0.5 mm aggregates. In aggregates smaller than 1 mm, the higher the abundance of functional bacteria that contributed to the soil's ability to fix carbon and nitrogen. Discussion: There were large differences in prokaryotic microbial community composition between <1 and >1 mm aggregates. The <1 mm aggregates play an important role in soil carbon transformation and carbon fixation. The 0.25-0.5 mm aggregates had the fastest organic carbon conversion rate and increased significantly more than the other aggregates. Some genus or species of Actinobacteria and Proteobacteria play a positive role in the carbon transformation of <1 mmaggregates. Such analyses may help to identify microbial partners that play an important role in carbon transformation at the micro scale of no-till black soils. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index