Autor: |
Häusler, Stefanie, Orsucci, Davide, Vollmann, Leonard, Peev, Eltimir, Moll, Florian |
Předmět: |
|
Zdroj: |
Optical Engineering; Apr2024, Vol. 63 Issue 4, p41211-41211, 1p |
Abstrakt: |
Quantum key distribution (QKD) enables private communication with information theoretic security. Free-space optical communication allows one to implement QKD without the limitations imposed by fiber networks such as the exponential scaling of transmission losses in optical fibers. Therefore, free-space QKD via satellite links is a promising technology to provide long-distance quantum communication connections. In free-space QKD systems, background light is the main source of noise, which has to be suppressed by means of spectral, spatial, and temporal filtering to reach a sufficiently low quantum bit error rate (QBER). Only then a quantum key can be exchanged successfully. To be able to define the requirements for a free-space QKD system, the background light must be examined more closely. Current considerations concentrate on cloud-free skies and rural environments. Free-space QKD will also take place when the sky is partly clouded and most likely also in urban environments. Here, an overview of physical causes of background light for downlink scenarios is given. Furthermore, the relation between QBER and background light is derived for a decoy-state BB84 protocol with polarization-encoded qubits to give an example of the dependency. Moreover, a setup to experimentally investigate the background light is shown. Measurement data were taken with this setup in Oberpfaffenhofen near Munich (Germany) in C-band. The measurement data are used to verify a background light simulation tool. The outcome underlines that simulation tools are sufficient for clear sky scenarios. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|