Autor: |
Lifshitz Sherzer, Gili, Urlainis, Alon, Moyal, Shani, Shohet, Igal M. |
Předmět: |
|
Zdroj: |
Applied Sciences (2076-3417); May2024, Vol. 14 Issue 9, p3835, 24p |
Abstrakt: |
The role of critical infrastructures in maintaining the functioning of the economy and society and ensuring national security, particularly their durability in delivering essential services during crises, including natural disasters such as earthquakes, is critical. This work introduces an analytical methodology to quantify potential earthquake damage to power stations and evaluate the cost-effectiveness of measures to enhance their seismic resistance. By employing fragility curves and probabilistic risk analyses, this approach provides a structured framework for the comprehensive assessment of risks and the identification of economically practical mitigation strategies. A detailed examination of strategies to protect critical power station components against seismic activity is presented, revealing that a minor investment relative to the overall project budget for earthquake-proofing measures is economically effective. This investment, representing a marginal fraction of 0.5% of the total project expenditure significantly reduces the seismic risk of power station failure by 36%. Reinforcing essential elements, including switching stations, water treatment facilities, and water tanks, is emphasized to ensure their continued operation during and after an earthquake. This research highlights the critical significance of integrating risk assessment with benefit-to-cost analysis in strategic decision-making processes, supporting the prioritization of investments in infrastructure enhancements. These enhancements promise substantial reductions of risks at minimal costs, thus protecting essential services against the impacts of natural disasters. This research contributes to state-of-the-art research in critical infrastructures resilience. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|