Real-Time Inspection of Fire Safety Equipment using Computer Vision and Deep Learning.

Autor: Alayed, Asmaa, Alidrisi, Rehab, Feras, Ekram, Aboukozzana, Shahad, Alomayri, Alaa
Předmět:
Zdroj: Engineering, Technology & Applied Science Research; Apr2024, Vol. 14 Issue 2, p13290-13298, 9p
Abstrakt: The number of accidental fires in buildings has been significantly increased in recent years in Saudi Arabia. Fire Safety Equipment (FSE) plays a crucial role in reducing fire risks. However, this equipment is prone to defects and requires periodic checks and maintenance. Fire safety inspectors are responsible for visual inspection of safety equipment and reporting defects. As the traditional approach of manually checking each piece of equipment can be time-consuming and inaccurate, this study aims to improve the inspection processes of safety equipment. Using computer vision and deep learning techniques, a detection model was trained to visually inspect fire extinguishers and identify defects. Fire extinguisher images were collected, annotated, and augmented to create a dataset of 7,633 images with 16,092 labeled instances. Then, experiments were carried out using YOLOv5, YOLOv7, YOLOv8, and RT-DETR. Pre-trained models were used for transfer learning. A comparative analysis was performed to evaluate these models in terms of accuracy, speed, and model size. The results of YOLOv5n, YOLOv7, YOLOv8n, YOLOv8m, and RT-DETR indicated satisfactory accuracy, ranging between 83.1% and 87.2%. YOLOv8n was chosen as the most suitable due to its fastest inference time of 2.7 ms, its highest mAP0.5 of 87.2%, and its compact model size, making it ideal for real-time mobile applications. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index