Autor: |
Shadimetov, Khalmatvay, Nuraliev, Farxod, Toshboev, Otajon |
Předmět: |
|
Zdroj: |
AIP Conference Proceedings; 2024, Vol. 3147 Issue 1, p1-8, 8p |
Abstrakt: |
This paper presents an optimal approach for approximating fractional integrals using professional methods. Also, optimal quadrature formulas are constructed in Sobolev space to approximate the fractional Riemann-Liouville integral. In this case, the first step involves utilizing the extremal function to calculate the norm of the error functional in the dual Sobolev space. Then, a Wiener-Hopf-type system is obtained by minimizing this norm over the coefficients of the quadrature formulas. This system is solved using a discrete analogue of the differential operator. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|