Autor: |
Jagadeesh, G., Gitanjali, J., Vellingiri, J., Pounambal, M., Sathiyamoorthy, E., Iwendi, Celestine |
Předmět: |
|
Zdroj: |
Journal of Supercomputing; May2024, Vol. 80 Issue 8, p10223-10254, 32p |
Abstrakt: |
Securing confidential data against unauthorized users leads to access control policies with the rapid progression of Internet of Things (IoT) devices. Because of high mobility subscribers, the dynamic IoT environment is subjected to high signaling overhead which remains a challenging issue to guarantee data dissemination to legitimate users. The group's key management schemes are the central mechanism to deal with dynamic environments. But they are centralized concepts that cause scalability issues and suffer in handling large numbers of subscribers. Therefore, this paper proposes a modified deep reinforcement oppositional wolf learning-based group key management (MDROWL-GKM) system to monitor the data obtained in IoT properly. It does not maximize the network traffic as well as computational overhead when a group member leaves or joins. With the inclusion of an opposition-based learning gray wolf optimization algorithm, the overload issue of the modified deep reinforcement method is eliminated and the performance is enhanced. The efficacy of the proposed MDROWL-GKM system is investigated using different measures namely storage overhead, computation overhead, access response time, space complexity, re-evaluation time, policy adjustment accuracy, and communication overhead. The experimental analysis proves that the proposed MDROWL-GKM system is superior to other state-of-the-art techniques, particularly with high policy adjustment accuracy (96%), less communication overhead (8 μs) and area under curve (AUC) rate (0.982). [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|