Abstrakt: |
A low cost imine-decorated linker, 4,4'-(hydrazine-1,2-diylidenedimethylylidene)dibenzoic acid was utilized for the preparation of copper-based metal–organic framework (MOF) denoted as Cu-L via a solvothermal technique. The synthesized MOF material has been fully characterized by different analytical techniques such as Fourier-transform infrared (FT-IR) spectroscopy, powder X-Ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive X-Ray spectroscopy (EDX), nitrogen adsorption–desorption isotherm analysis, and thermogravimetric analysis (TGA). It has been found that the coordination of Cu2+ with L considerably reduced the band gap of the L of nearly about 1 eV, which is approximately 26% decline in total. Notably, a narrow band gap of the photocatalyst is an essential requirement for the proficient photodegradation of organic contaminants. An excellent optical properties and narrow band gap of (2.8 eV) of Cu-L ensure their suitability as a photocatalyst for the degradation of methylene blue (MB) dye. In the presence of Cu-L photocatalyst, 84.22% degradation of MB dye was observed after 150 min under sunlight exposure. It is the first time that imine-functionalized MOF was utilized for the degradation of MB dye under sunlight irradiation. For understanding the photodegradation of MB dye by the Cu-L photocatalyst, all the plausible mechanistic studies have been carried out in detail. Both theoretical (with the help of density functional theory (DFT) calculations) as well as experimental studies have been conducted to justify the possible mechanisms for the photodegradation of MB dye by Cu-L. The current work may open a new opportunity to construct a cheap MOF-based photocatalysts for fast degradation of dye contaminants. [ABSTRACT FROM AUTHOR] |