Microplastic-induced oxidative stress response in turbot and potential intake by humans.

Autor: Köktürk, Mine, Özgeriş, Fatma Betül, Atamanalp, Muhammed, Uçar, Arzu, Özdemir, Süleyman, Parlak, Veysel, Duyar, Hünkar Avni, Alak, Gonca
Předmět:
Zdroj: Drug & Chemical Toxicology; May2024, Vol. 47 Issue 3, p296-305, 10p
Abstrakt: Microplastic (MP) pollution has become a health concern subject in recent years. Althoughann increasing number of studies about the ingestion of microplastics by fish, research on the oxidative stress response to MPs in natural environments is quite limited. In this study, the identification and characterization of MPs in gill (G), muscle tissues (M), and gastrointestinal tract (GI) of turbot (Scophthalmus maximus) were evaluated. Oxidative damage of MPs on the brain (B), liver (L), gill (G), and muscle (M) tissues as well as their effect on superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), paraoxonase (PON), arylesterase (AR) myeloperoxidase (MPO), and malondialdehyde (MDA) biomarkers were evaluated. The potential transmission of MPs from muscle tissues to humans was examined. Results showed that gills contain the highest amounts of MPs, ethylene propylene is the most dominant polymer type, black and blue are the most common MP color, fiber is the most common shape, and 50-200 µm is the most common MP size. Results showed that MPs cause oxidative stress of tissues with inhibiting effect on enzyme activities and promoting impact on lipid peroxidation. The oxidative damage mostly affected the liver (detoxification organ) followed by gill tissue. The intake of MPS in the European Union was estimated by EFSA as 119 items/year, while in Turkey it is 47.88 items/year. This study shows that more research is needed in terms of ecosystem health and food chain safety. The risk assessment of MPs in living organisms and environmental matrices including food safety and human health should be considered a public health issue. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index