Using Xenopus to discover new candidate genes involved in BOR and other congenital hearing loss syndromes.

Autor: Neal, Scott J., Rajasekaran, Anindita, Jusić, Nisveta, Taylor, Louis, Read, Mai, Alfandari, Dominique, Pignoni, Francesca, Moody, Sally A.
Předmět:
Zdroj: Journal of Experimental Zoology Part B: Molecular & Developmental Evolution; May2024, Vol. 342 Issue 3, p212-240, 29p
Abstrakt: Hearing in infants is essential for brain development, acquisition of verbal language skills, and development of social interactions. Therefore, it is important to diagnose hearing loss soon after birth so that interventions can be provided as early as possible. Most newborns in the United States are screened for hearing deficits and commercially available next‐generation sequencing hearing loss panels often can identify the causative gene, which may also identify congenital defects in other organs. One of the most prevalent autosomal dominant congenital hearing loss syndromes is branchio‐oto‐renal syndrome (BOR), which also presents with defects in craniofacial structures and the kidney. Currently, mutations in three genes, SIX1, SIX5, and EYA1, are known to be causative in about half of the BOR patients that have been tested. To uncover new candidate genes that could be added to congenital hearing loss genetic screens, we have combined the power of Drosophila mutants and protein biochemical assays with the embryological advantages of Xenopus, a key aquatic animal model with a high level of genomic similarity to human, to identify potential Six1 transcriptional targets and interacting proteins that play a role during otic development. We review our transcriptomic, yeast 2‐hybrid, and proteomic approaches that have revealed a large number of new candidates. We also discuss how we have begun to identify how Six1 and co‐factors interact to direct developmental events necessary for normal otic development. Research Highlights: Branchio‐oto‐renal patients have hearing loss and kidney defects.Mutations in SIX1, SIX5, and EYA1 are causative in about half of cases.To uncover putative new candidate genes, we used Xenopus and identified novel transcriptional targets and interacting proteins. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index