Autor: |
Li, Fanyue, Thananusak, Roypim, Raethong, Nachon, Yang, Junhuan, Wei, Mingyue, Zhao, Xingtang, Laoteng, Kobkul, Song, Yuanda, Vongsangnak, Wanwipa |
Předmět: |
|
Zdroj: |
Biology (2079-7737); Apr2024, Vol. 13 Issue 4, p276, 15p |
Abstrakt: |
Simple Summary: The lipid yield of Mucor circinelloides WJ11 has been much studied for industrial production improvement. In this study, the carRP gene responsible for the production of carotenoids was knocked out, which resulted in the interruption of the carotenoid production pathway and a simultaneous impact on lipid production. Further, an integrative transcriptome and genome-scale metabolic model-driven analysis was conducted, which provides insights into the coordinated relationship between carotenoid and fatty acid biosynthesis in M. circinelloides. The findings can be used to design efficient M. circinelloides cell factories. Mucor circinelloides WJ11 is a lipid-producing strain with industrial potential. A holistic approach using gene manipulation and bioprocessing development has improved lipid production and the strain's economic viability. However, the systematic regulation of lipid accumulation and carotenoid biosynthesis in M. circinelloides remains unknown. To dissect the metabolic mechanism underlying lipid and carotenoid biosynthesis, transcriptome analysis and reporter metabolites identification were implemented between the wild-type (WJ11) and ΔcarRP WJ11 strains of M. circinelloides. As a result, transcriptome analysis revealed 10,287 expressed genes, with 657 differentially expressed genes (DEGs) primarily involved in amino acid, carbohydrate, and energy metabolism. Integration with a genome-scale metabolic model (GSMM) identified reporter metabolites in the ΔcarRP WJ11 strain, highlighting metabolic pathways crucial for amino acid, energy, and nitrogen metabolism. Notably, the downregulation of genes associated with carotenoid biosynthesis and acetyl-CoA generation suggests a coordinated relationship between the carotenoid and fatty acid biosynthesis pathways. Despite disruptions in the carotenoid pathway, lipid production remains stagnant due to reduced acetyl-CoA availability, emphasizing the intricate metabolic interplay. These findings provide insights into the coordinated relationship between carotenoid and fatty acid biosynthesis in M. circinelloides that are valuable in applied research to design optimized strains for producing desired bioproducts through emerging technology. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|