The Myc-associated zinc finger protein epigenetically controls expression of interferon-γ-stimulated genes by recruiting STAT1 to chromatin.

Autor: Tiaojiang Xiao, Xin Li, Felsenfeld, Gary
Předmět:
Zdroj: Proceedings of the National Academy of Sciences of the United States of America; 4/23/2024, Vol. 121 Issue 17, p1-10, 127p
Abstrakt: The MYC-Associated Zinc Finger Protein (MAZ) plays important roles in chromatin organization and gene transcription regulation. Dysregulated expression of MAZ causes diseases, such as glioblastoma, breast cancer, prostate cancer, and liposarcoma. Previously, it has been reported that MAZ controls the proinflammatory response in colitis and colon cancer via STAT3 signaling, suggesting that MAZ is involved in regulating immunity-related pathways. However, the molecular mechanism underlying this regulation remains elusive. Here, we investigate the regulatory effect of MAZ on interferon-gamma (IFN-1)- stimulated genes via STAT1, a protein that plays an essential role in immune responses to viral, fungal, and mycobacterial pathogens. We demonstrate that about 80% of occupied STAT1-binding sites colocalize with occupied MAZ-binding sites in HAP1/K562 cells after IFN-1 stimulation. MAZ depletion significantly reduces STAT1 binding in the genome. By analyzing genome-wide gene expression profiles in the RNA-Seq data, we show that MAZ depletion significantly suppresses a subset of the immune response genes, which include the IFN-stimulated genes IRF8 and Absent in Melanoma 2. Furthermore, we find that MAZ controls expression of the immunity-related genes by changing the epigenetic landscape in chromatin. Our study reveals an important role for MAZ in regulating immune-related gene expression. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index