Modeling and assessment of the techno-economic analysis of biogas and its potential for the generation of electricity from water hyacinth biomass.

Autor: Asante, Enoch, Asiedu, Nana Yaw, Sarpong, Samuel, Agyemang, Emmanuel Okoh, Ajani, Ibrahim, Ntiamoah, Augustine, Adjaottor, Albert Amatey, Addo, Ahmad
Předmět:
Zdroj: Journal of Engineering & Applied Science; 4/24/2024, Vol. 71 Issue 1, p1-19, 19p
Abstrakt: The study presents the economic feasibility assessment of converting the produced biogas from water hyacinth biomass into electricity. Approximately, 0.3793 m3CH4/kgVS was generated from the water hyacinth biomass. The research indicated that the available water hyacinth population on the Lower Volta River in the year 2020 could potentially generate a methane yield of 53.676 × 106m3. The volume of methane gas generated had the potential to produce an annual electricity output of 110.792 × 106 kWh, which could be integrated into the national grid. The economic analysis indicated positive results with an initial total investment cost of $67,273,700. The project showed a positive net present value (NPV) of $8,923,769 and a levelized cost of 0.172 $/kWh. The simple payback and equity payback periods were determined to be 5.5 and 11.3 years, respectively. Furthermore, a sensitivity analysis conducted showed that the project's NPV remained positive when variations in input parameters such as initial cost, operations, and maintenance cost were less than 15% sensitive range. However, a 30% reduction in the feed-in tariff cost resulted in a negative NPV. In conclusion, biogas production from water hyacinth biomass in Ghana can make a significant contribution to the country's energy mix and help alleviate the energy shortfall in rural areas. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index