Numerical modeling techniques for noise emission of free railway wheels.

Autor: Taenzer, Linus, Pachale, Urs, Van Damme, Bart, Bergamini, Andrea, Tallarico, Domenico
Předmět:
Zdroj: Railway Engineering Science; Jun2024, Vol. 32 Issue 2, p144-161, 18p
Abstrakt: In this article, we consider the numerical prediction of the noise emission from a wheelset in laboratory conditions. We focus on the fluid–structure interaction leading to sound emission in the fluid domain by analyzing three different methods to account for acoustic sources. These are a discretized baffled piston using the discrete calculation method (DCM), a closed cylindrical volume using the boundary element method (BEM) and radiating elastic disks in a cubic enclosure solved with the finite element method (FEM). We provide the validation of the baffled piston and the BEM using measurements of the noise emission of a railway wheel by considering ground reflections in the numerical models. Selected space-resolved waveforms are compared with experimental results as well as with a fluid–structure interaction finite element model. The computational advantage of a discretized disk mounted on a baffle and BEM compared to FEM is highlighted, and the baffled pistons limitations caused by a lack of edge radiation effects are investigated. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index