Investigating the fundamental properties of iron ore granules when combined with varying amounts of liquid and different powder binders.

Autor: Dahri, Muhammad Waryal, Zhou, Hao, Zhou, Mingxi
Předmět:
Zdroj: Particulate Science & Technology; 2024, Vol. 42 Issue 4, p625-639, 15p
Abstrakt: The study focused on how different moisture levels (5%–11%) and powder binders affected the bulk and strength characteristics of three iron ore blends. Increasing liquid content initially decreased and then increased the bulk density of all blends, and the shear strength of Blend-A and Blend-B increased up to 9% liquid content and then decreased at 11%, while Blend-C had a higher shear strength. In Blend-A, the cohesion varies between 0.64 and 5.49 kPa, while the internal frictional angle varies between 39.05° to 46.75°. For Blend-B, the cohesion ranges from 1.03 to 4.05 kPa, and the internal frictional angle ranges from 45.00° to 47.90°. Furthermore, Blend-C has cohesion ranging from 2.71 to 3.97 kPa and internal frictional angle ranging from 45.00° to 50.07°. Blend-A was considered a base blend using three powders, and the impact of adding these powders was assessed using Blend-A. HL maintained the cohesion at 4.50 kPa, and the internal frictional angle of Blend-A was significantly increased by 49.62° in the presence of HL. QL powder maintained cohesion values (1.47 kPa) and high internal frictional angle values (51°). Similarly, calcite powder sustained cohesion values (2.49 kPa) and high internal frictional angle values (51.96°). [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index