Autor: |
Podină, N., Udriștoiu, A. L., Ungureanu, B. S., Constantin, A. L., Georgescu, C. V., Bejinariu, N., Pirici, D., Burtea, D. E., Gruionu, L., Udriștoiu, Ș., Săftoiu, A. |
Předmět: |
|
Zdroj: |
Endoscopy; 2024 Supplement 2, Vol. 56, pS95-S95, 1p |
Abstrakt: |
This article discusses the use of deep learning segmentation architectures to automatically detect pancreatic ductal adenocarcinoma (PDAC) in endoscopic ultrasound guided fine needle biopsy (EUS-FNB) samples. The study compares three U-Net architecture variants using two different datasets from medical centers in Craiova and Bucharest. The results show that the Inception U-Net model performed the best, with an accuracy of 97.82% for the Craiova Dataset and 95.70% for the Bucharest Dataset. The study concludes that the tested U-Net architectures provide excellent results for PDAC histological image segmentation. [Extracted from the article] |
Databáze: |
Complementary Index |
Externí odkaz: |
|