CNN-CatBoost ensemble deep learning model for enhanced disease detection and classification of kidney disease.

Autor: Bhaskar, Navaneeth, Borhade, Ratnaprabha Ravindra, Barekar, Sheetal, Bachute, Mrinal, Bairagi, Vinayak
Předmět:
Zdroj: Indonesian Journal of Electrical Engineering & Computer Science; Apr2024, Vol. 34 Issue 1, p144-151, 8p
Abstrakt: An efficient deep-learning prediction model for identifying chronic kidney disease (CKD) from exhaled breath is presented in this paper. The concentration of urea will be higher in CKD patients. Salivary urease breaks down the stored urea into ammonia, which is then excreted through breath. Thus, by monitoring the breath ammonia content, it is possible to identify the presence of high urea levels in the body. In this work, a novel sensing module is developed and applied to measure and assess the amount of ammonia in exhaled breath. Moreover, an effective deep learning prediction model that combines the CatBoost algorithm and convolutional neural network (CNN) is used to automate the prediction of disease. The proposed model, which combines the benefits of gradient-boosting and CNN, attained an exceptional accuracy of 98.37%. Experiments are conducted to evaluate the proposed model using real-time data and to assess how well it performs in comparison with existing deep learning methods. Our study's findings demonstrate that kidney disease can be accurately and noninvasively diagnosed using the proposed approach. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index