Abstrakt: |
Manufacturing defects, such as porosity and inclusions, can significantly compromise the structural integrity and performance of additively manufactured parts by acting as stress concentrators and potential initiation sites for failure. This paper investigates the effects of pore system morphology (number of pores, total volume, volume fraction, and standard deviation of size of pores) on the material response of additively manufactured Ti6Al4V specimens under a shear–compression stress state. An automatic approach for finite element simulations, using the J2 plasticity model, was utilized on a shear–compression specimen with artificial pores of varying characteristics to generate the dataset. An artificial neural network (ANN) surrogate model was developed to predict peak force and failure displacement of specimens with different pore attributes. The ANN demonstrated effective prediction capabilities, offering insights into the importance of individual input variables on mechanical performance of additively manufactured parts. Additionally, a sensitivity analysis using the Garson equation was performed to identify the most influential parameters affecting the material's behaviour. It was observed that materials with more uniform pore sizes exhibit better mechanical properties than those with a wider size distribution. Overall, the study contributes to a better understanding of the interplay between pore characteristics and material response, providing better defect-aware design and property–porosity linkage in additive manufacturing processes. [ABSTRACT FROM AUTHOR] |